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A new approach for distribution of grid points on the surface and in the volume has been

developed. In addition to the point and line sources of prior work, the new approach utilizes

surface and volume sources for automatic curvature-based grid sizing and convenient point

distribution in the volume. A new exponential growth function produces smoother and more

efficient grids and provides superior control over distribution of grid points in the field. All

types of sources support anisotropic grid stretching which not only improves the grid

economy but also provides more accurate solutions for certain aerodynamic applications.

The new approach does not require a three-dimensional background grid as in the previous

methods. Instead, it makes use of an efficient bounding-box auxiliary medium for storing

grid parameters defined by surface sources. The new approach is less memory-intensive and

more efficient computationally. The grids generated with the new method either eliminate

the need for adaptive grid refinement for certain class of problems or provide high quality

initial grids that would enhance the performance of many adaptation methods.

Nomenclature

a	 = source strength

d	 = radial distance between a target point and the axis of a cylindrical volume source

h/l	 = ratio of vertical distance from aircraft over the body length

I,J,K	 = index numbers of a target point position in relation to a bounding-box
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C	 = axial distance between a target point and end 1 of a cylindrical volume source

L	 = source edge length

n	 = geometric growth exponent

N	 = total number of sources

r= Euclidean distance between a target point and a source

Ri , Ro = inner and outer radii of a cylindrical volume source

u, v	 = parametric coordinates

x, y, z	 = Cartesian coordinates

a	 = generic notation representative of grid stretching parameters; also flow incidence

a	 = weighted average value

0 	 = growth function

fl	 = hybrid growth exponent

x	 = maximum principal curvature

9 	 = angular resolution

ξ	 = index defining projection zone of a bounding-box

As0	 = primary grid spacing at the source

AS0 	 = secondary (stretched) grid spacing at the source

As	 = primary grid spacing at the target point

As 	 = characteristic length (average mesh spacing)

IF, S2	 = geometric rates of growth

Introduction

The unstructured grid methodology is currently at a stage of maturity that allows discretization of complex, three-

dimensional (3D), real-world configurations with relative ease and reasonable amount of time and effort. Thanks to

many advances by a number of researchers in the science/art of grid generation, this crucial step no longer represents

an obstacle for the routine use of Computational Fluid Dynamics (CFD) in the context of large-scale (industrial)

applications.
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However, despite considerable progress towards facilitating the grid generation process itself, some aspects of

the generated grids still lack the desired characteristics for producing accurate CFD solutions and, thus, require

further attention. Among the challenges is generation of good quality grids (in a practical and effective manner) for

capturing complex flow physics characterized by discontinuities, extensive regions of flow separation behind blunt

bodies, and vortices. Suitable grids for solving these complex flow problems require well-resolved, anisotropic grids

in the field far away from the geometry.

For many years, solution-adaptive grid techniques have been hailed as the ultimate solution to difficult CFD

problems. Although the assertion is plausible, and the potential of adaptive grid methods is indisputable, there are

some issues that have limited the capabilities (and thus the success) of these methods in practice. Among the

concerns is the adequacy of the initial grid to guide the adaptation process in the “right” direction. In addition, the

quality of the refined grids directly affects the viability and accuracy of the final solution. A misconception among

many CFD practitioners is that an adapted solution is always a good solution; whereas, experience has shown that an

adapted solution can be invalid (converged to an incorrect solution) if it originates from a poor quality initial grid.

One of the crucial aspects of any grid generator is its convenience and ability to control point distribution in the

field. While automation of grid spacing is desirable, many are based on resolving surface features 1-3 and are limited

in what can be controlled in the field. The flexibility of any method that allows the user to intervene and freely

prescribe the desired field-grid characteristics, including multi-directional anisotropic stretching, at arbitrary

locations is equally important. Many conventional methods are based on manual description of grid length scales on

the model geometry or at the nodes of a secondary mesh commonly referred to as a background grid. These methods

benefit from a high degree of flexibility but are labor-intensive and may lack the desired accuracy. The success of

these methods depends on the experience and attentiveness of the practitioner in tailoring the mesh according to

specific requirements of the problem at hand. Obviously, prescription of hundreds of parameters by hand is prone to

errors that affect the grid robustness.

The present work is an attempt to mitigate the problem of grid management by maintaining a balance between

automation and flexibility for human control. The new approach builds on prior works based on the “source”

concept4 and an automatic curvature-based mesh sizing technique 3 reported earlier. The method exploits the benefits

of both while alleviating some of the shortcomings of each. In addition, new capabilities are introduced for better

control and automation.



The process of grid distribution with sources, presented in Ref. 4, is analogous to propagation of heat from

source elements in a conducting medium. The process results in a smooth and natural dissipation of length scales

from the sources throughout the domain. This approach has enjoyed much success and popularity owing to its

flexibility as well as the quality of the generated grid. It also provides excellent control for applying multi-

directional anisotropy that enhances the grid economy (grid counts) without compromising the effective grid

resolution. Although the point and line sources of Ref. 4 provide a higher level of grid quality and control compared

to the conventional means, they still lack the desired automation as well as the control of grid distribution in an

extended region in the volume. Manual prescription of a large number of point and line sources to manage grid

distribution in the bulk of a 3D domain is a tedious and time-consuming task and often fails to produce the desired

result.

In Ref. 3, an alternative method was developed by which mesh sizing was determined based on the topology of

the underlying surface geometry. In this method, the grid length scales are automatically derived from the local

surface curvatures and are distributed among the nodes of a recursively refined octree background grid enclosing the

entire domain. The grid parameters are then interpolated from the background grid during the unstructured grid

generation. Although this approach substantially enhanced the automation of grid generation over the method of

sources, it still suffered from the lack of control over grid distribution in the volume and also in regions on the

surface where the local surface curvature alone could not provide the desired grid resolution. In addition,

construction of the octree background grid was “expensive” in terms of computational time and storing the entire

secondary grid (often with a resolution comparable to the unstructured grid itself) in the computer memory.

Furthermore, the technique did not provide the much-needed option of anisotropic grid stretching for reducing grid

counts - a vital capability for generating large Navier-Stokes (NS) grids. Although it was shown in Ref. 3 that grids

could be generated using the two methods of curvature-based and sources in combination, the quality and control of

the grid distribution could not be fully guaranteed because of the different (and inconsistent) techniques employed

by the two methods for propagation of length scales in the field.

This paper describes an advanced mesh sizing technique for the generation of high quality unstructured grids for

solving complex CFD problems. The new approach is geared towards combining the two techniques described

above synergistically in order to exploit the advantages of both while removing the shortcomings of each as much as

possible. By combining the two methods, we attempt to keep a balance between automation and controllability for
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an effective and convenient grid management. The method is implemented in a new version of the unstructured grid

generator VGRID 5 developed at the NASA Langley Research Center.

Methodology

The new approach employs source elements as a means for defining and distributing grid length-scales in the

computational domain similar to that in Ref. 4. In addition to point and line sources of the prior work, two more

source types, surface and volume, are introduced in the present approach. Figure 1 shows a schematic of different

Figure 1. Different types of source elements for defining mesh parameters.

source types currently implemented in VGRID. These are the simplest geometric shapes (with the exception of

arbitrary surface sources) for which various operations such as projection and interpolation can be performed

analytically and quickly. Other geometric entities such as curves and arbitrary volumetric shapes can also be

implemented with the expense of more extensive computations.

Source Propagation

In the context of prior work in Ref. 4, the point and line source elements behave as source terms in a governing

elliptic partial differential equation for dispersing grid spacing parameters in the field. The solution scheme

employed in that work involves interpolation of spacing parameters from line sources using the method of line

integration. The numerical solution of the resulting Poisson equation, in effect, boils down to a weighted averaging
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scheme using a uniform Cartesian background grid. The inherent diffusive characteristic of the scheme tends to

automatically average out any inconsistencies among sources and provides a smooth variation of mesh length-scales

throughout the domain. Although mesh sizing through sources is convenient and flexible, the averaging nature of the

scheme employed in Ref. 4 makes the control of mesh distribution difficult. For example, a small change in the grid

spacing or source strength at one location may affect the grid resolution in other areas.

Alternatively, a different approach was adopted in Ref. 3 by which the mesh length scales propagate from the

sources in the field using the geometric growth function

Δs r  = Δs 0 (1 +Γ)
n 	

(1)

where the exponent n corresponds with the shortest Euclidean distance r between a target point in the field and the

source. The exponent is determined by equating r to the sum of the first (n-1) terms of the geometric series given

by Eq. (1), i.e.,

n= 
⎝
	

0

⎛
ln ⎜ 1 + ^ Γ

J

ln(1 + Γ)
	 (2)

The typical value for the geometric growth factor Γ is 0.1 that corresponds to a 10 percent rate of growth of the

mesh spacing.

A combination of the point/line source technique of Ref. 4 and the growth function of Ref. 3 has produced mixed

success due to incompatibility of the two methods. In the present approach, a modified version of the above growth

function is applied to all types of sources uniformly. Two modifications have been implemented to the function in

this work. To induce an exponential rate of growth (as opposed to geometric), the exponent n in Eq. (1) is extended

by an additional term defined as

1 +^Ω. 	 (3)

The exponential growth factor Ω varies between 0.0 and 0.2, and the characteristic length Δs in Eq. (3) is set to an

average value of the mesh spacing extrema.

The second enhancement to the growth function is the implementation of strength (intensity) factors for

individual sources similar to those used in Ref. 4. In combination with the global geometric growth rate Γ, the
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adjustable source strengths provide better control over distribution of length-scales from each source. Finally, the

modified growth function used in the present approach is given by

η

Δs rI = Δs0 (1 +
Γ

J	
(4)

a

where

⎛
ln ⎜ 1 + 

rl Γ ⎞

η=
Cl + Os 2	

⎝

r Δ

so a J	
(5)

l	 J ln
⎝l+ a ⎠

The nominal value for the source strength ( a) is 1. A value above 1 makes the source stronger and propagates its

spacing attributes farther out in the field. Values smaller than 1 make the source weaker compared to other sources.

Unlike the prior methods that make use of a Cartesian or octree background grid to store mesh length-scales in

the field, the present approach requires no such auxiliary grids. The primary length-scales are directly evaluated

from the sources using Eq. (4), and the value (Δs) at a target point is set to the minimum of mesh length-scales

computed for all sources.

For generating anisotropic stretched grids, a secondary or stretched spacing parameter (ΔS0) and the

corresponding stretching direction are also required. The stretching parameters are computed at the target points

using a weighted averaging of the values associated with each source, i.e.,

__
N

a i N 1
α E o'' E

where α represents the stretching parameters (secondary spacing or the direction vector) at the target point, and αi

denotes the corresponding value for the ith source at a distance ri >0 from the point.

The new growth function provides more efficient and smoother distribution of length-scales in the field as well

as flexibility for better control of grids using individual source strengths and the global growth factors. Unlike the

method in Ref. 4, no ad hoc adjustment of source strengths is required, and the method provides the precise grid

spacing that the user prescribes at the source location. The new universal method guarantees the uniformity of the

(6)
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Figure 3. Projection of target points
P; to the surface source S.

length scales computed from different source types as opposed to the inconsistency of the hybrid approach taken in

Ref. 3.

Point/Line Sources

The point and line sources are the simplest geometric entities. Grid parameters (primary and secondary length-

scales as well as the stretching direction) are prescribed and stored at the point or the two ends of a line source. The

prescribed mesh parameters vary linearly along a line source between the two ends, and the stretching direction is

defined along the source. The shortest distance r is calculated by a

simple projection of the target point onto the source in 3D (Fig. 2),

and the mesh parameters are evaluated using Eqs. (4) and (6). The

point and line sources are useful for controlling mesh characteristics

in small regions locally such as corners and edges of a geometry.

A

Surface Sources	 Figure 2. Projection of target points P;
Surface sources are defined in terms of Non-Uniform Rational B- 	 to l;ne source LA-B.

Spline (NURBS) representations and are usually made of the same

underlying surfaces that define the geometry for surface mesh

generation. However, arbitrary surfaces can also be defined in any

form and shape and used as sources at any location in the field. To

define grid parameters on the sources, the surfaces are first discretized

using a simple 2D structured mesh (Fig. 3), and the grid parameters

are distributed and stored at the nodes of this mesh. The shortest

distance r is determined by projection of the target point onto the

surface using the NURBS library of Ref. 6, and the mesh parameters

are evaluated using Eqs. (4) and (6).

The grid parameters on the surface of a source are determined in this work based on:

a) Local curvature of the surface source (finer grid resolution at high-curvature areas and vice versa).

b) User-prescribed values.

c) Geometric limiting factors such as minimum edge length (L) of the source.
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A blend of these options can also be used to produce the desired grid resolution. For example, if the option (a) alone

does not adequately resolve the grid at a location of low curvature, other options can be activated in combination.

For the curvature option, the primary mesh length-scale is automatically computed on the surface using the

following relationship between the local length-scale (Δs0), the corresponding maximum principal curvature (κ)

computed locally, and a prescribed angular resolution ( θ)

Δs o = 2sin(2 
J/

κ
	

(7)

The angular resolution is independent of the model scale, and a nominal value of 15 degrees works well for most

applications. Lower angles result in finer grids and vice versa. The maximum principal curvature is computed at a

point on the surface using the NURBS library of Ref. 6. After the primary length-scales are computed on all nodes

of the 2D mesh, the values are smoothed out throughout the surface by propagating the minimum values in the u and

v directions using a growth function similar to Eq. (1). A separate growth factor ( Γs) controls the rate of growth of

the grid resolution on the surface from regions of high curvature (finer grid) to other areas.

In the second option (b), the user prescribes the mesh parameters at the four corners of a surface source. The

quantities in the interior of the surface are computed using bi-linear interpolation of the values at the corners. This

option is useful for resolving the grid on a flat surface or where the surface curvature is low. In the last option (c),

grid length-scales are automatically determined based on the minimum edge length of a surface source such that a

predetermined number of grid elements fit across the source. This option is useful for resolving the grid on narrow

surfaces such as the blunt trailing edge of a wing.



(a)	 (b)

(c)	 (d)

The surface sources, especially with option (a), provide excellent grid quality and distribution of points on the

surface with minimum amount of manual work. Figure 4 shows an example grid in which the grid resolution is

automatically computed based on the surface curvature using six surface sources. As indicated, more points are

Figure 4. Sample grid generated using six surface sources with automatic
curvature-based grid sizing: (a) sources defined in terms of NURBS, (b)
surface mesh, (c) surface/volume mesh, and (d) close up view of surface and
volume grid between the two objects.

added at locations of high curvature such as the small sphere as well as the hole in the middle of the torus and vice

versa. Also, note that the close proximity of the smaller object has affected the grid resolution on the larger object

with a lower curvature. As a result, grid is finer in the gap and on the torus with a smooth transition both on the

surface and in the volume. In this example, only the underlying NURBS surfaces defining the geometry are used as

sources. No additional information other than the growth rates and the minimum/maximum allowable grid size is

required.

An important feature of the surface source concept in the present work is its capability of supporting anisotropic

grid stretching. The method employed in Ref. 3 lacked this feature, and grid stretching was accomplished by
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introducing additional line sources in combination with

the curvature-based grid sizing. In this work, stretching is

implemented by prescribing a secondary length-scale

(ΔS0) in the parametric u or v direction and computing

the stretching parameters in the field using Eq. (6). The

anisotropic grid stretching is extremely useful for

generating efficient Reynolds-Averaged Navier-Stokes

(RANS) grids on complex configurations. The feature

reduces the number of grid elements substantially

without compromising the effective resolution of the grid

in the essential directions. Figure 5 illustrates a sample

grid generated using a surface source with automatic

computation of the primary grid spacing. The lower

p
Stretching

Figure 5. Sample RANS grid with automatic
curvature-based grid sizing and anisotropic
stretching generated using a surface source.

NURBS surface with a ripple acts not only as an underlying surface definition but also as a source for computing the

primary length scales. As indicated, the grid is automatically refined in the u direction to resolve the curvature of the

ripple but not in the other direction resulting in high-aspect-ratio triangles.

Another difference between the present curvature-based approach and that reported in the previous work 3 is in

the mechanism that transmits the grid length-scales from the surface into the field. The method in Ref. 3 relies on an

octree background grid for this purpose. Although the octree mesh provides an excellent tool for the distribution of

length-scales throughout the field, it suffers from an efficiency drawback that limits the applicability of the method

for generating very large grids. The construction of an octree was shown in Ref. 3 to be relatively fast thanks to

implementation of some efficient algorithms and data structures. However, the computer memory requirement for

storing data on a large background grid poses an obstacle to the routine application of the method for solving real

world problems. The requirement is especially restrictive for complex configurations with extensive variations in the

surface curvature resulting in a very fine grid resolution. The size of the background grid for such applications can

become comparable to that of the final unstructured grid. The generation of a massive grid with this method would

require a large computer to store both grids in the memory. In the present method, no 3D background grid is needed

for transmitting data from surface into the volume; therefore, the memory requirement is much smaller.
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While the elimination of background grid improves the memory problem, it obviously reduces the speed of the

computation. Direct query of surface sources for every mesh point in the field requires projection of the point onto

the underlying CAD surfaces. The projection process involves extensive numerical search operations which are

highly CPU-intensive. To reduce both the memory requirement and the computational costs, a new approach has

been implemented in the present work as described in the following section.

Bounding-Box Approach

The idea behind this approach is to map the grid information stored on a surface source to an intermediate

medium defined by a simple geometric entity (such as a Cartesian box or any other analytical surface) that encloses

the source completely (Fig. 6a). The surface of this simple shape acts as a new auxiliary surface source for which

the projection can be performed analytically and, thus, considerably faster. The new technique, in effect, reduces the

problem of a large 3D background grid to a number of much smaller 2D problems.

(a)
	

(b)

Figure 6. Bounding-box auxiliary source: (a) surface source and its bounding
box, (b) box faces discretized with two-dimensional Cartesian grids.

The following steps describe the process of query of surface sources using the bounding-box concept:

1) Define a Cartesian bounding-box for each surface source based on the min/max dimensions of the source

(xmin, xmax, etc.)

2) Discretize the six faces of each bounding box using a uniform 2D Cartesian grid (Fig. 6b). The present

approach uses a 20X20 discretization on each face.

3) Extrapolate spacing parameters from each source to its corresponding bounding-box mesh using the growth

function given by Eqs. (4) and (6).
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4) During the unstructured grid generation, evaluate the spacing parameters at a target point from:

a) a surface source itself if the point is inside the corresponding bounding box, and/or

b) the faces of all bounding-boxes that exclude the target point.

The query process is considerably faster with this approach because, regardless of the number of surface sources, the

expensive CAD projection is always limited to, at most, one source when the point is inside the corresponding box

(assuming there is no overlap between the bounding boxes). Query of an auxiliary (box) source is greatly simplified,

as the critical part of the process is reduced to a simple analytic projection of the target point to a readily identifiable

segment of the Cartesian box.

A 3D space that contains a box is divided into twenty seven projection zones around and inside the box. The

projection zone in which a target point P (with coordinates x,y,z) resides is determined by the relation

ξ = I + J + K	 (8)

Where

⎧⎪  100, for	 x ≤ xmin ⎧⎪  10, for	 y ≤ ymin ⎪  1, for⎧ ZZZZZZZZZZ≤ z
min

I = ⎨  200, for	 xmin< x < xmax
⎩300, for	 x ≥ x

max

J = ⎨  20, for	 ymin< y < ymax
⎩  30, for ZZZZZZZ≥ y

m9x

K = 2,^	 for
⎩3, for

zmin< z < zmax
	 (9)

ZZZZZZhW.I

Equation (8) gives a unique index for each of the twenty-seven projection zones. Once the zone ξ of a target point is

identified, the point is simply projected to a corner (C), edge (E), or face (F) of the bounding box according to the

format outlined in Table 1 and the notations defined in Fig. 7.

Table1. Twenty Seven Projection Zones and
Corresponding Elements of a Bounding-Box

Zone ξ Projects to Zone ξ Projects to
111 C1 223 F6
112 E9 231 E4
113 C5 232 F4
121 E1 233 E8
122 F1 311 C2
123 E5 312 E10
131 C3 313 C6
132 E11 321 E2
133 C7 322 F2
211 E3 323 E6
212 F3 331 C4
213 E5 332 E12
221 F5 333 C8
222 Source

z

xmin	 xmax	 t	
yΔx

x

Figure 7. Corner, edge, and face labels of a bounding-box.
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The procedure described above is extremely fast, as it requires no time-consuming search operations. Note that only

a small fraction of the points in a volume grid are adjacent to the geometry and, thus, the majority falls outside of all

surface source bounding-boxes. Therefore, the expensive CAD projection (even for one source at a time) is

completely eliminated for most part of the grid generation. The method provides excellent grid quality with a

fraction of computational time (compared to the direct query of sources) and with substantially less memory

requirement in comparison to methods utilizing a 3D background grid.

Volume Sources

Although point, line, and surface sources offer great versatility for defining mesh resolutions on the surface, they

are not as much effective for controlling grid density in an extended region in the volume away from the geometry.

Such grid requirements often arise from applications involving, for example, massively separated flows in the wake

of a bluff body where a uniformly refined mesh is a required. Earlier efforts to generate suitable grids for such

applications with conventional sources required manual insertion/description of hundreds of line or even surface

sources without much success. Alternatively, adaptive methods attempt to refine the mesh in the field by point

insertion and/or grid movement. An issue with this type of refinement is grid distortion as the mesh density is

increased through local post-processing operations rather than by the grid generator itself in a natural way.

Furthermore, the lack of adequate grid resolution in the initial mesh may result in refinements in the wrong regions

of the grid or may produce no sufficient refinement at all.
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Volume sources provide excellent control over grid distribution anywhere in the field. With these sources, the

prescribed grid resolution remains constant (or varies as specified by the user) inside the source and grows smoothly

outside using Eqs. (4) and (6). Figure 8 illustrates an application of volume sources for resolving the grid in the

wake of a circular cylinder that is positioned in the flow field with its axis normal to the free stream. This classic

problem of real fluid flow is characterized by extensive flow separation behind the cylinder resulting in a complex

3D pulsating vortex structure shed into the wake. Experience has shown that accurate numerical simulation of this

geometrically simple but computationally challenging flow problem requires precise specification of the grid

characteristics in the wake region. This problem serves as a good example to signify the benefits of volume sources

in producing the exact grid properties that the user desires to enforce anywhere in the field.

Volume sources are defined in terms of simple geometric shapes such as spheres, right circular cylinders, or

cones with inner radius Ri and outer radius Ro. A volume source can be solid (Ri=0) where the grid spacing inside

the source remains constant or varies linearly from one end of cylinder/cone to the other (like those shown in Fig. 8).

For a hollow source (R i>0), grid spacing remains constant between the two radii and grows both inside and outside

Figure 8. Application of volume
sources to refine a grid in the wake of
a cylinder: (a) volume source, (b)
volume grid, and (c) iso-surface of
vorticity (USM3D solution courtesy
of M. Pandya).

(b)
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(a)	 (b)

P9

v

P 8

P7

Figure 9. Projection of target points P i in nine different projection zones of volume source cp: (a)
overall view of a volume source in 3D, (b) cross-section of a conical source.

of the source using the same growth functions applied to other source types. Note that a volume source degenerates

to a surface source for Ri set to Ro. The projection of a target point in the field to a volume source is simple and

efficient. As illustrated in Fig. 9, a point in 3D space lies in one of the nine projection zones of a hollow cylinder.

The minimum distance from a target point to the source can be determined analytically regardless of orientation of

the source axis (v) in space. For a target point positioned anywhere inside the source (point P5), the minimum

distance r is equal to zero, and the primary length-scale in Eq. (4) reduces to the prescribed value for the source

(Δs0).

Anisotropic grid stretching has also been implemented for volume sources resulting in an even larger effect on

reducing the number of grid elements in nonessential directions. Grids can be stretched with volume sources in the

axial, tangential to the wall, or circumferential direction. Figure 10 illustrates examples of grid stretching using

volume sources with different stretching directions. The grids in Figs. 10(b)-10(e) have been generated using a

conical source, whereas the one in Fig. 10(f) has been generated with two narrow cylindrical sources to produce

circumferential stretching on the surface and in the field. Note that the circumferential stretching is at its maximum

level at the outer radius of the source and gradually reduces in magnitude to zero at the center as shown in Fig.

10(e). Although the extent of linear stretching (axial/tangential) is theoretically unlimited with a volume source, the
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amount of circumferential stretching is constrained by the source radius. The upper bound of the secondary

(stretched) length-scale for circumferential stretching is a function of the primary spacing and the outer radius of the

source given by

ASo<_ Aso(Ro 4As
o
)

	

(10)

Anisotropic stretching is a powerful tool for generating efficient grids for large problems. The capability is

particularly important for generating RANS grids on complex configurations for which the size of a mesh can

become prohibitively large. Anisotropic stretching reduces the number of grid elements in directions of low flow

gradients without affecting the grid resolution in other essential directions. As an example of the power of grid

stretching in reducing the grid size, the isotropic mesh shown in Fig. 10 (b) has over 13.5 million cells, whereas the

stretched grid in Fig. 10(d) with the same primary spacing contains only 1.6 million cells. Grid stretching is also

essential for producing accurate solutions for certain class of flow problems as will be shown in another example

later in the paper.
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(a)
	

(b)

(c)
	

(d)

(e)
	

(f)
Figure 10. Examples of anisotropic grid stretching in different directions with volume sources: (a) a
conical source, (b) cross-section of volume grid with no stretching, (c) volume grid with axial
stretching, (d) volume grid with tangential stretching, (e) volume grid cut with circumferential
stretching, and (f) surface grid with circumferential stretching using two narrow cylindrical sources.
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Sample Results

Two sample applications are presented in this section to demonstrate the new grid generation capabilities for

computing real-world, complex, aerodynamic problems. The first application features geometric complexities

posing difficult grid generation issues, and the second example represents a challenging CFD problem requiring

special grid properties for producing accurate results. In addition, an unconventional (non-aerodynamic) example

grid is presented to demonstrate the power of curvature-based sourcing for automatic grid point distribution.

Apollo Launch Abort Vehicle (LAV)

The vehicle configuration consists of a front cylindrical body with a nose cone, four abort motors, a structural

truss system, and a crew module as shown in Figure 11. The geometry features complexities such as truss beams in

very close proximity and tight angles at

the end junctures that make generation

of RANS grids extremely difficult even

with unstructured grid methodology.

Precise control of grid spacing at these

difficult locations is crucial for growing

thin-layered viscous grids of good

Abort Motor

Truss System

Crew Module

Figure 11. CAD model definition for the Apollo Launch Abort
Vehicle (LAV).

quality without introducing complications during the generation process. In addition, a uniformly fine grid is

required to resolve the flow details around the entire truss system, center body, and the jet exhaust of the abort

engines. Similar to the cylinder example shown earlier, the blunt base of the crew module creates a large flow

separation region. Proper resolution of the grid in the wake is essential for predicting the aerodynamic forces and

moments accurately.

Conventional sourcing of such a complex configuration would require hundreds of line, point, or even surface

sources to define proper grid spacing in the critical regions. With the current approach, only nine volume sources are

prescribed and easily inserted around the entire geometry as illustrated in Figure 12. Seven sources are used to

define the spacing functions on the geometry itself, including only one to cover the entire complex area around the

truss system (highlighted in the magenta color), and two to refine the grid in the wake region. Anisotropic stretching
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Figure 12. Application of volume sources for the LAV configuration.

is applied along the front cylindrical section (in the axial direction) and around the back rim of the crew module (in

the circumferential direction) to reduce the grid counts.

The generated RANS grid is illustrated in Figure 13. As evident, the grid is adequately resolved in the areas of

interest with a smooth distribution of points both on the surface and in the volume. The efficiency and convenience

that the volume sources provide are unparalleled for controlling grid distribution in difficult areas such as that shown

in Fig. 13(b) as compared to the conventional methods. This grid contains 8,216,471 nodes and 48,355,970

tetrahedrons. A breakdown of the grid counts and the generation CPU time is presented in Table 2. A MacBook Pro

laptop with 2Ghz Intel Core Duo processor and 2GB of RAM was used to generate this grid.

Extensive RANS computations of the LAV configuration have been performed at the NASA Langley Research

Center as part of the NASA Crew Exploration Vehicle (CEV) Aerosciences Project. Although the focus of this

paper is on the grid generation aspect of the ongoing work, a sample flow result is presented in Figure 14 for

completeness and to demonstrate the viability of the generated grids for producing good quality solutions. These

solutions have been generated using the unstructured grid solver USM3D 7 on a number of different grids generated

with the present method.
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(a)

(b)
Figure 13. Tetrahedral grid on the Apollo LAV configuration: (a) geometry and the
volume grid, (b) close-up view of surface and volume grid cuts around the truss system.
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Table 2. Grid Statistics for the LAV Test Case

Grid
Segments

Number of
Nodes

Number of
Triangles

Number of
Tetrahedra

Generation
Time (m)

Surface Grid 190,032 380,216 ---- 14.0

Volume Grid
(viscous part)

4,216,778 ---- 25,279,941 8.5

Volume Grid
(inviscid part)

3,809,661 ---- 23,076,029 65.5

Total 8,216,471 380,216 48,355,970 88.0

M = 1.48
	

M = 3.00
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Figure 14. Comparison of CFD and wind tunnel data for the Apollo LAV Configuration
at α = 0°: (a) sample Mach contours, (b) drag coefficient, (c) pitching moment
coefficient. (USM3D solutions courtesy of Neal T. Frink and Naomi McMillin.)
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Sonic Boom Prediction

One of the challenges facing CFD application is simulation of the sonic boom problem. Aircraft flying at

supersonic speeds disseminate pressure waves that extend a long distance in the flow field. Accurate prediction of

the wave strengths far away from the model poses a challenge for the computational simulation of the problem.

Among the difficulties is generation of suitable grids, particularly in 3D. Typical CFD grids usually grow off the

surface too early causing the numerical solution to dissipate and lose the wave signals within a short distance from

the geometry. For a successful simulation, a mesh should adequately resolve the waves several body lengths away

from the model. The control of grid resolution far in the field is generally a challenge, especially with unstructured

grids.

There is a large volume of reports in the literature addressing the problem of sonic boom computation. Among

them, many rely on adaptive grid refinement techniques. While adaptive methods provide a powerful tool for

improving the accuracy and efficiency of CFD solutions, their level of success usually hinges on the adequacy of the

initial grid upon which the adaptation process embarks. The resolution of typical initial grids is often insufficient

around the geometry or quickly grows in the field within a short distance from the surface. As a result, the initial

solutions obtained on these coarse grids often miss the essential flow features and cause the subsequent adapted

grids/solutions fail to converge to the desired level of accuracy.

Experience has shown that in addition to proper mesh density, other grid properties such as anisotropy and

orientation of cell faces in relation to the wave angles can also play an important role in the accuracy of the

predicted wave strengths. Previous attempts by the author and other investigators to resolve the waves by refining

isotropic unstructured grids have produced limited success for solving the sonic boom problem. While the

importance of grid alignment and shock-fitting techniques for resolving the pressure waves has been known (and

exploited using structured grids) for many years, their implementation for unstructured grids has been a problem in

itself.

In the present work, the new volume sources have been employed to produce a better control over grid

distribution in an extended region in the field. Furthermore, the stretching feature of volume sources has provided

the ability to produce very high-aspect-ratio, anisotropic grids that accommodate better alignment of stretched

tetrahedral cells with the wave angles.
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To demonstrate the utility of the new technology for computing sonic boom problems, a generic wing-body

configuration referred to as the Segmented Leading Edge (SLE) model has been employed. The model (shown in

Figure 15) has been tested in the NASA Langley Unitary Plan Supersonic Wind Tunnel (UPWT) as well as the

Figure 15. CAD model definition for the Segmented Leading Edge (SLE)
configuration.

NASA Glenn 10 ¯ 10 Wind Tunnel.

Figure 16 illustrates volume sources used to prescribe grid resolution around the aircraft and in a region beneath

the geometry extended 10 body lengths downward. Note that for this study, prediction of wave signatures only

below the aircraft is of interest. The cylindrical sources are positioned at an angle of 30 degrees with respect to the

freestream direction (Mach angle corresponding to a freestream Mach number of 2). The radii of these sources are

large enough to cover the entire profile of the aircraft and to resolve the pressure waves emanating from different

sections of the aircraft downward. The grid on the surface of geometry is mostly isotropic except at the wing leading

edge. However, high level of grid stretching with a maximum cell aspect ratio of about 80 is prescribed for the

volume sources to stretch the tetrahedral cells along the waves. Such stretching ratios are well within the acceptable

limits of most tetrahedral-based Navier-Stokes flow solvers. In general, VGRID insures grid quality by regenerating

any inviscid cell having a negative volume or a minimum included angle between edges of the tetrahedra less than a

user-prescribed value, which is typically 0.01 to 0.03 degrees.
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Figure 16. Volume sources for defining grid properties on the SLE configuration.

Figure 17 depicts the triangulation on the symmetry plane, which is indicative of the volume grid distribution in

the field. As illustrated in Fig. 17(a), the grid is densely clustered normal to the Mach angle with a resolution that

remains constant along the waves extended far in the field. Figure 17(b) shows a close-up view of the grid on the

symmetry plane revealing the high-aspect-ratio grid elements stretched in the direction of the waves. Despite its

super fine resolution in a large proportion, this grid contains only 8.7 million tetrahedrons and 1.5 million nodes

thanks to the power of grid stretching in reducing the cell count.

An inviscid flow solution was obtained on this grid using USM3D at an incidence angle of 0 degree and a

freestream Mach number of 2. Figure 18 shows pressure coefficient contours on the symmetry plane at the far and

near fields. As indicated, the pressure waves remain well defined even at 10 body lengths below the geometry,

whereas those in the upper section (where the grid is not adequately resolved) dissipate quickly. An earlier

experiment with the same configuration had demonstrated that while an isotropic grid refinement in the regions of

interest improved the solution, it had not been sufficient to produce the quality results obtained with the present

anisotropic grid refinement. A comparison of the CFD and experimental pressure distributions at 2.5 body lengths

(h/l) below the aircraft is presented in Figure 19. This solution is considerably better than any prior solutions

obtained with the same solver but using different grids, some even generated with adaptive refinement techniques
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(a)

(b)

Figure 17. Surface mesh including triangulation of the symmetry plane for the SLE
configuration: (a) far field, (b) close-up view near the geometry.
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SLE Configuration
Pressure Coefficient
M = 2, α = 0 deg.
USM3D inviscid solution
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Figure 18. Pressure distribution on the SLE configuration at M„ = 2 and a = 00: (a) far field,
(b) close-up view near the geometry.
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Figure 19. Comparison of streamwise pressure distributions
between CFD and Wind tunnel data for the SLE configuration at
h/l = 2.5, M„ =2, and a = 00.

containing much larger number of grid elements. As shown in Figure 19, most pressure peaks are predicted well

except in two areas that are marked with arrows. These discrepancies are believed to be due to differences in the

shape of the sting and its connection to the fuselage between the wind tunnel and the present CFD models.

Recently, researchers at NASA Langley Research Center have conducted more comprehensive computational

studies of the sonic boom problem with different methods, some using the present volume source technology.

Interested readers are referred to References 8-10 for a thorough discussion of the problem and more results.

Human Body

The final example is a mesh on an unconventional configuration to demonstrate the capabilities of the curvature-

based surface sources for automatic grid point distribution. The geometry is that of a human body defined in terms

of 64 NURBS surfaces as shown in Fig. 20. The model features details with small and localized curvatures suitable

for testing the new surface source and the bounding-box techniques. The problem makes use of all 64 NURBS

surfaces as sources, and does not employ any other type of source for distributing grid points on the surface or in the

field.
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Figure 21 illustrates an isotropic triangular surface mesh

generated on the geometry. As clearly shown in this figure, all

geometric features are reflected on the mesh, and grid points are

clustered according to the topology of the underlying surfaces

automatically. For example, the mesh is appropriately refined at

locations of higher curvature such as the facial features, fingers, and

even small variations in the body curvature throughout the surface.

The grid is smooth and of excellent quality.

The control of grid distribution for this example has been

remarkably convenient because the process is highly automatic yet

flexible as the grid spacing and its rate of variation on the surface are

readily controllable using a few global parameters. The application of

point, line, or volume sources, instead of surface sources, would have

involved manual insertion of a large number of sources and

prescription of spacing parameters for every individual source; a

Figure 20. Human Body configuration
defined in terms of 64 NURBS surfaces.

process that is highly labor-intensive and time-consuming. Furthermore, the use of conventional sources would have

required adjustment of source parameters through several trial-and-error iterations before obtaining the desired

result. Nevertheless, the use of conventional sources (regardless of the number and manual adjustments of sources)

is insufficient to produce the level of quality that the present mesh exhibits. Generation of the present grid using

surface sources required no ad hoc adjustment of the grid parameters and no trial-and-error iterations were

performed. The mesh shown in Fig. 21 was generated in the first try. This important aspect of the approach

alleviates the adverse effect of human error/inexperience for generating difficult grids and also removes the user

variance factor, so similar grids generated by different practitioners will be compatible and more standard.
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Figure 21. Triangulation of the Human-Body configuration using curvature-based mesh sizing.
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It should be emphasized that generation of a grid using a large number of surface sources is impractical without

the use of a background grid (such as that employed in Ref. 3) or the bounding-box technique implemented in the

present work. Direct query of surface sources during grid generation is highly inefficient and computationally

expensive. The efficiency of a surface source is directly proportional to the resolution of the underlying NURBS

surface.

Table 3 compares the CPU times and the grid statistics for two RANS grids generated on the Human-Body

configuration: one with the bounding-box technique and another using direct source query.

Table 3. Grid Statistics and Generation Times for the Human-Body Grid

Grid Segments
Without Bounding-Box With Bounding-Box

Triangles/tetrahedra 	 Time (m)Triangles/tetrahedra 	 Time (m)
Surface mesh 98,814 221.54 94,306 21.57
Volume mesh (viscous) 7,507,098 135.35 7,169,067 14.38
Volume mesh (inviscid) 2,779,059 1340.22 2,151,909 34.09
Total 10,286,157 (tet) 1697.11 9,320,976 (tet) 70.04

The numbers in this table indicate that the effect of the bounding-box on reducing the generation time for different

grid components is enormous. Without the bounding-box approach, the total grid generation time is about 28 hours

using direct source query. Applying the bounding-box technique reduces the generation time to less than 1.2 hours -

a speedup factor of 24. Note that the viscous portion of the grid contains about 70 percent of the cells, yet it requires

considerably less amount of generation time than the other grid components. The reason is that the Advancing-

Layers method does not rely on source query for constructing viscous layers as much as the Advancing-Front

technique does for generating the surface mesh and the inviscid portion of the grid. Although the bounding-box

approach has improved the efficiency of the method substantially, the surface sources are still more CPU-intensive

than other types of sources. However, saving of the labor time, which is otherwise required for setting up the

conventional sources, fully compensates for the higher CPU time spent for query of surface sources. Furthermore,

storing additional data on the bounding box faces in this example requires a modest increase in the computer

memory of only 6.8 Mbytes for 64 surface sources, which is insignificant compared to the memory requirement of a

full 3D background grid. These grids were generated using a Mac Pro desktop with 2 Dual-Core, 3Ghz Intel Xeon

processors and 16GB of memory.
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Concluding Remarks

A new sourcing technique for distribution of mesh length-scales has been devised and implemented in the

unstructured grid generation code VGRID. In addition to conventional point and line sources, the new method

utilizes surface and volume sources for automatic curvature-based grid sizing and also convenient point distribution

in the volume. The new method does not require a 3D background grid for storing grid parameters and, thus, is more

efficient and less memory-intensive. To increase the efficiency of the surface source query, a new approach of

bounding-box is implemented. The bounding-box technique, in effect, reduces the problem of storing data on 3D

background grids to a 2D problem in which only six faces of a bounding box are used as a storage device. A new

exponential growth function produces smoother and more efficient grids and provides superior control over

distribution of grid points in the field as compared to the previous method of source propagation. All types of

sources support anisotropic grid stretching, which improves the grid economy considerably and provides more

accurate solutions for certain aerodynamic applications such as sonic boom prediction.

The sample applications presented in this paper demonstrate the capability of the method for generating good

quality grids suitable for computing complex aerodynamic problems. Each source type offers its own unique

strengths for controlling grid distribution suitable for a specific problem at hand. For example, volume sources are

best suited for the LAV and the Sonic Boom applications presented in this paper, whereas surface sources are more

effective for handling problems such as the Human Body example. The strength of the present approach of sourcing

is that all types of sources can be combined and simultaneously utilized in a problem featuring different geometric

and/or flow physics requirements. Although the sourcing method alone is not a substitute for adaptive grid

techniques, it provides better initial grids that can enhance the performance of many adaptation methods. Work is

currently under way to further improve the efficiency of the surface sources and to extend the implementation of

additional volume source shapes.
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